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The non-isentropie steady spatial double-wave equations of an ideal gas with an equation of state of the form ~ = g(p)/l 2 (S) are 
investigated in two cnse~ omitted previously [1]: when H ;~ 0, ~ ffi c~  and when H = 0 with straight level lines. 0 1997 Elsevier 
Science Ltd. All rights reserved. 

The analysis given here completes the classification of spatial steady non-isentropic double waves with an arbitrary 
equation of state x = x(p, S) when there is a functional arbitrariness in the general solution of the Cauchy problem. 
Partial solutions of t~s  kind for a polytropic gas can be found in [2-5].¢ 

We will consider double waves 

v = v(p,S) 

which are irreducible: to invariant solutions of the equation describing the flow of an ideal gas in the spatial steady 
non-isobaric and non-isentropic case 

d-~t+xVp=O, ~-----xdivv=0, ~ = 0  (1) 
dt dt 

with equation of state x = x(p, S), Xp ~ O, Xs ~ O. Here v = (ub u2, U3) is the velocity, p is the pressure, S is the 
entropy, x is the spea;ific volume, d/dt = uad/dxa (summation is carried out over repeated Greek subscripts from 
1 to 3, unless otherwise stated), and the following notation is also used below 

H = ~ p + v p v p ,  ~=Xs+VpV s, ~ = 2 ~ - x  s ,  b = v x v  s, X=bvp  

It follows from the: investigation carried out below and results obtained previously in [1] that there are only the 
following forms of spatial non-isentropic, non-isobaric steady double-wave type flows of an ideal gas, irreducible 
to invariant sohtions with functional arbitrariness. 

1. Double waves with an arbitrariness in one function of one argument and an equation of state x = g(p)A2(S), 
in which Ul = hi (p)A(S), while the other coordinates of the velocity u2 and u3 either have the form u2 = h2(p)A(S), 
u3 = u3(S) or the form u2 -- u2(S), u3 = u3(S). In the first case the functions hi(p), h2(p) andg(p) satisfy a system 
of two ordinary differential equations (21) [1] (F2 = h'2/h'l, hlh'~ + h~'~ ~ 0). In the second case the functions u2 
= u2(S), u3 = u3(S) are arbitrary while hi(p) and g(p) are related by the equation g + hlh~ = 0 (hlh~ ~ 0). 

These solutions for a polytropic gas were considered previously in [1], where the functions u2(S) and u3(S) are 
linearly related to A(S) ,  i.e. only a special class of solutions of the double-wave form was indicated. 

2. Double waves with straight level lines with an arbitrariness in two functions of one argument, which are arbitrary 
functions of the solution of Eq. (31) [1]. For x (p, S), v(p, S) there is an overdetermined system consisting of five 
differential equations: (3), (30) and (32). An analysis of this overdetermined system is difficult in the general case 
of the equations of state. But in a special case, this system is only compatible for a polytropic gas with polytropic 
index ¥ = 2 and has a solution with an arbitrariness in one function of one argument. 

3. Double waves with straight level lines with an arbitrariness in two functions of one argument and with an 
2 equation of state x ffi g(p)A (S). In this case u2 = u2(S), u3 = u3(S) are arbitrary ((u.~4)s g 0, i ffi 2, 3), ul = hl(p)a(s). 

Here hi(p) = kip + k and g(p) = --klhl. 
4. Double waves with an arbitrariness in one function of two arguments, which is an arbitrary function of the 

solution of Eq. (1.25) from [1] 

-gQp  + h~( Z' - Q(h/2 1 h~ ) ' - x  3 (h~ I h~)')(h3Qx3 - h 2 ) = 0 " 

tPrikl. Mat. Mekh. M31. 61, No,.1, pp. 159-167, 1997. 
~:See also: Zubov, Ye. N., Double waves for the spatial steady equations of gas dynamics. Candidate dissertation, Sverdlovsk, 

1978. 
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The functionsg(p) and hi(p) (i = 1, 2, 3) are related to Eqs (1.24) from [1] 

~h;~ =0. n . ~ - - - g  

Here Z ffi Z(p), Q = Q(p, S, x3), ui = hi(p)A(S) (i = 1, 2, 3) and the equation of state is z --- g(p)A2(S). 

Theorem. Only the four forms of spatial uon-iseutropic, non-isobaric steady double-wave type flows of an ideal 
gas, irreducible to invariant solutions with functional arbitrariness, indicated above exist. 

Proof. After introducing the new relationship ¢p = (div v)/xp, we obtain from ( 1 ) 

v V p -  zcp = 0, vVS = 0, vsVS  = He~ (2) 

i (~1 ,~2  Jl)3 ) = Vp + CpVp = 0 

Since the flow is isobaric we have ¢p # 0, vp # 0 (to fix our ideas we will assume that u~, # 0). It follows from 
(2) that 

X+Wp =0 (3) 

(the Bernoulli integral). 
Differentiating Di totally with respect to the spatial variable xi (i = 1, 2, 3) and setting up the following 

combinations from Eqs (2), we obtain 

Dx  # = - V p  x Vq~- vpsVS-~p2Vp x vii  , = 0 (4) 

D(Hq~- V SVS)/  Dt = Hdcp/ dt-9('tV ps + V p(V pV s ) )VS  +q~2(H 2 +' t r ip)  = 0 (5) 

D ~  / Dt = v pde~/ dt +'cVcp+q~VS-e~2(v p H - ' f v  pp) = 0 (6) 

where D = (D1, D2, D3), D/Dt = yD. 
Eliminating the derivatives V, from (4) using (6) we obtain 

(~Vp --'¢VpS) × VS = 0 (7) 

Henceforth we will need to distinguish two cases: H # 0 and H = 0. 
1. Suppose H # 0. If ¢p is expressed from the third equation of (2), and we substitute this quantity into the 

remaining equations of this system, then, instead of (7), we obtain a homogeneous system of quasilinear differential 
equations inp and S. From the fact that it is forbidden to reduce the double waves to invariant solutions [6] and 
from Eqs (2) and (6) we have the equation 

,:v~ - ~vp = 0 (8) 

whence it follows that vector functions F = (FI(p), F2(p), F3(p)) exist such that (F1 -ffi 1) 

(9) 

Since H # O, it follows from the second and third equations of (2) that b # 0. To fix our ideas we will assume 
that bl ~ u2u3s - u3u2s # O. 

The system of equations which the functions U = (p, S, (p)" must satisfy is written in the form of the following 
overdetermined system of quasilinear differentia/equations 

Ux 3 + a3Vxl = fl, Ux 2 + a2Uxl = 1"2 

Pxl +qmlp =0,  q~elSxt +(Pxt = f  (1O) 

b~Gi = -hi  , 

q)ei 
e ffi ( el ,e2,e3 ) = ~H V p +--~b 

with functions fl, fz and f which are independent of the derivatives Ux. (i = 1-3). 
For a solution of system (1) having functional arbitrariness to extst we must have 

~ ( b l v p - u l p b ) = O  (11) 
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This follows from a consideration of the matrix compiled from the coefficients of the leading derivatives in the 
extended system (10). The results of an analysis of the case when ~(blV~ - u ~ b )  = 0 or ~ ~ 0, given previously in 
[ 1], show that either contradictory equations are obtained or reduction to plane flow occurs. Below we will investigate 
the case when ~ = 0, which was not considered previously. 

When the condition ~ = 0 is satisfied, some of the equations of system (10) take the form 

~[t _ffi (tIJ I tlJ 2 ,tiJ3) = zHVq)+cpH~VS-cp2c = 0 

c -=(2H 2 + xHp)vp -'tHvpp 

From the equations D x 4 '  = 0 we obtain another threefirst-order (scalar) equations 

axVS+q~dx Vp =0  

Here 
a = xH[Hp / H -  2u~pp / u~p + 2 H / X]s F 

(12) 

d ~(2H 2 + zHp )Vpp - ZHVppp 

From the fact that it is forbidden to reduce the double wave to an invariant solution in Eqs (10) and (12) it 
follows that a = 0 and di = F.,Di, (i = 2, 3), i.e. 

[ Hp / H - 2u lpp / u! p + 2 H I x]  s = 0 (13)  

Fi'(Ulp(2H 2 + ¢Hp)-2"tHulpp)-'tHulpFi"=O, ( i=2.3) (14) 

When (3), (9) and (14) are satisfied and ~ = 0, system (10) is in involution and has a solution with an arbitrariness 
in one function of one argument xi. Hence, when H ;e 0 it remains to investigate the compaffaility of only the system 
consisting of Eqs (3)~ (9), (14) and ~ ffi 0. This can be split into two cases: F2 = F3 = 0 and (F2) 2 + (~ )  ~ 0. 

Suppose initially that F2 = ~3 = 0, i.e. Fi = const. Without loss of generality we can assume that F2 ffi F3 = 0 
or u2 = u2(S), u3 = u:3(S). Here u2 = u2(S), u3 = u3(S) are assumed to be arbitrary functions of the entropy. From 
the condition ~ = 0 and (3) we obtain the arbitrary relations 

Uip = - x  l u I , uls = "tsU I / (2~) (15) 

After cross-differentiating ul with respect to p and S in the last equations and equating the mixed derivatives 
we have (Xs / x)j, = 0. Hence we obtain x = A 2 (S)g(p), and after integrating (15) we have u~ = -2A2(S)fg(p)dp. 
One can verify here [~ direct substitution that a = 0. Hence, in this case the equation of state must have the form 

2 x = A (S)g(p), and the components of the velocity are 

ul =hl(p)A(S). u2 =u2(S), u 3=u3(S) 

where hi(p) is found from the equation hlh'l + g = O, while the functions u2(S), u3 = u3(S) are arbitrary. 
Note that for a polytropic gas the same condition was obtained in [1] for the function hi(p) but the functions u2 

= u2(S), u3 = u3(S) were assumed to be related toA(S), i.e. a narrower class of solutions is indicated (because of 
the additional assumption). 

2 2 Sup,l~fle now that (F2) + (F3) ~ 0. Since f f /u~  ~e 0, by virtue of the linearity of Eqs (14) with respect to Fi 
and F '  (i = 2, 3), we can assume without loss of generality that b2 ~ 0 and F3 = 0. 

From (14) we obtain al = 0 and 

Hp I H = 2ulp p I Ulp - 2H I x + F~'I F~ 

2 After substituting H = xp + u~,(1 + F2) here we obtain the equation 

2ulppxp ~ F~ 2H ~Pp+2F2F:{u2P =0 (16) 
ul pH F~ "c H 

From (3) we can determine the component of the velocity u2 = -(ul + x/uv)/F2. Substituting its expression into 
(9) (i = 3) and into ~ = 0 (taking (3) into account), we obtain 

[ H F~(uluIP+'t) ] ZSUlp (17) 
Ulpp =UlP '-~ xF 2 ' UlpS = 2"C 

After cross-differentiation of Eqs (17) we obtain 
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U I (2'tUls -- (BF 2 ) I (U I pF" 2 )) I "¢s (B = -X'tps - Xp'C s ) (18) 

and after differentiating (18) with respect top  and substituting it into (17) we obtain 

=  s[-2B+ ( 2!+ ] 4 BUls (19) 

I fB  ~ 0, we can determine Ul and Uls in terms of Ulp from (18) and (19). Then, after differentiating (18) with 
respect to S we have 

( Bp / B) s = B / x 2 (20) 

and after substituting the first expression of (17) into (16) we obtain an equation, differentiation of which with 
respect to S taking (20) into account gives the relation xp + u~,(1 + F 2) = 0, which contradicts the condition H 
;~ 0. Hence, we need to assume that B = 0, which corresponds to the equation of state x = g(p)A 2 (S). For this 
equation of state Ulh~(p)A(S), and we have the following system of two ordinary differential equations for the 
functions F2(p) and Hi(p) 

F2F~'((h~)2(I + F22)+ g ") = 2(F~)2 h~(g'hl -h~g)+ F2F~gg" + 

+2((F:~)2 g + (h I)2 F2 F~(1 + F 2 ))((h~) 2 (l + F 2 )+ g ' )  (21) 

F2ghf= F 2 (1 + F 2 )(hf) 3 - F~h I (h~) 2 + h~(F2g'-gF ~) 

The function u2 = uz(S) remains arbitrary. 
As in the previous case, a similar solution for a polytropic gas was obtained previously by Zubov (see the earlier 

footnote), but the function u2(S) was related linearly to the functionA(S). 
Hence, i fH ~ 0, steady double-wave type non-isentropic non-isobaric flows, which have a functional arbitrariness 

and are not reducible to invariant solutions, only exist for the equations of state x = A2(S)g(p). 
2. Suppose now that H = 0. It follows from the fact that education of system (2), (5), (7) to invariant solutions 

is forbidden, that the following equations are satisfied 

vg =0, vsg =0, g2 +~Vpg =0  (g = XVps -~vp)  (22) 

For the further investigation we will change to new independent variablesp, S, and x3 (we can assume without 
loss of generality that the inequality px~Sx2 -Px2Sx~ ¢ 0 holds), i.e. xl = P(P, S, x3), x2 = Q(p, S, x3). 

After making this change Eqs (1) can be written as 

BPp - A Q p  = O, ulpBP s - ( ' t  +UlpA)Qs = 0 

('[ + u2pB)P $ - u 2 p A Q s  = 0 

( u3 pn - "CQ x 3 ) Ps - ( u3 pA - XPx 3 )Qs = 0 (23) 

(.2s -"3sQ.3 )ep - ( 'qs  -u3se.3 )Qp = 0 

where 
( A -- u I - u3Px3 , B =- u2 - u3Qx3 ) 

Ppas - ?sQp ~ 0 (24) 

The investigation of system (23) can be split into two cases: (a) v s x Vp s = 0 (this case was investigated previously 
in [1]), and (b) Vs x Vps ¢ 0 (this case was eliminated from consideration in [1] and in Zubov's dissertation). 

We will consider case (b) below. To fix our ideas we will assume that R = U~sUl~ - UCsU~ * 0. 
Since we must assume that Ps 2 + Q2 ¢ 0, we obtain from the second and third equations of (23) thatA 2 + B 2 
0and  

A 2 +B 2 4 0  and (25) 

"C +UlpA +u2pB = 0 
or, by virtue of (3) 

u3p = u, pPx3 +uzpQx 3 = 0 

Integrating this equation with respect to x3 we obtain 
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x3U3p + UlpP + u2pQ = z (26) 

with arbitrary functien Z = Z(p, S). It follows from (25) that the second and third equations of system (23) reduce to 

Ul p Ps + u2pQ$ = 0 (27) 

Differentiating (26) with respect to S and then substituting (27) we obtain the relation 

UlpSP + U2psQ = X,s - x3u3ps (28) 

We then obtain from (26) and (28) 

P='Rt-x3lu3p s u2psl I~s U2psl (29) 

x lUmps ulpsl IZs ulpsl ) 

If b = 0, we have v = U l F  , where F = F(p), ~ - 1, F '  2 ~ 0. After substituting (29) into the first equation of 
(23), we obtain (F'3/t~) = 0 if F3 = klF2 + k2 with constants kl and k2, and this implies that u3 = klu2 + k2ul, i.e. 
reduction to an invariant solution. Hence we must consider b ~ 0, i.e. the vectors v, Vs and b are not coplanar. 
From (22) we obtain: 

"fVps = ~Vp - ~ / b 2 (30) 

Here, since R ~ 0, we have ~ ,  ~ 0. 
After substituting (29) into (23) and taking (30) into account there remains only a single second-order linear 

hyperbolic equation with respect to the function Z -- X(P, S) in system (23) 

Xps + AZp + BZs +Cz--O (31) 

Here 

A=-~--, C = A p + A B +  ~'cp 
2~ 2 

Hence, for H = 0 in ease (b) flows with straight level lines exist if the functions x and ui(p, S) (i = 1, 2, 3) satisfy 
the overdetermined system consisting of five differential equations: (3), (30) and 

H m Xp + VpVp = 0 (32) 

It is difficult to analyse this overdetermined 2~stem in the general ease of the equation of state. We will do this 
for an equation of state of the form x = g(p)A (S). 

Differentiating (32) with respect to S and substituting (30) we obtain a relation from which it follows from the 
form of the equation of state and from the fact that ~ ~ 0, that 

Xp +27t 2 / b  2 = 0  (33) 

Differentiating (3), (32) and (33) with respect t o p  we obtain 

wpp =0,  vpvpp = - f p  12 

bVpp = ~ g " / ( 2 g ' ) -  bp (g'A2b + Vp ) 
(34) 

The determinant for the derivative vm in (34) will be d --- x(ws) + v2(vpvs). 
If d = 0, after differentiating d with respect top  we obtain an equation, using which together with the first two 

equations of (34), we obtain the second derivatives 

2 2 2 Vpp =-k~(2X +~pV ) / (2W ) -b~t~ / (2~ , )  ( k = v x v p )  (35) 
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After differentiating (33) with respect top,  taking (35) and the relation d ffi 0 into account, we find v 2 = -2xxT,/x_. 
Hence we obtain w s = -(2xr~/xao)s, and from the relation d ffi 0 it follows that VpVs ffi --Xs/2. Butwe then obtain 

= 0, which is impossible in the case in question. Hence we must have d ~ 0. 
Since d ~ 0, from Eqs (34) we obtain the second derivatives 

dvpp = bk + Xpp (v(vv s ) -  Vs v2 ) / 2 (36) 

(b = "cpp~,,l(2"fp)+'~p('t'v$ +(VpVS)v2)l(2~,)) 

We can verify by direct calculations that the equation (v ~)s  - (Vps)p = O is satisfied. Hence, the new relations, 
containing derivatives of v no higher than the second order, can only be obtained after differentiating (33) with 
respect to S 

avss -Xp~b 2 / (2~) = 0  (a -- 2Xk-xp(V2Vs -(VVs)V))  (37) 

Corollaries of Eqs (3), (30), (32) and (33) will be useful later. Since the vectors v, Vs and b are not coplanar, the 
vectors vp and k can be expressed linearly in terms of them 

Vp = [-V('t'V 2 +(VVs)(VpVS))+vs('C(VVs)+V2(VpVS))+~kb]/b 2 

Hence we have the relation 

k = [v~.(vv s) - vSZv 2 + b d ] / b  2 

2('~V S +(VpVs)V) 2 +'~pb 2 = 0  

Then, taking (39) into account, we can write (37) in the form 

(38) 

(39) 

(4o) 

4~xdbvss = Xp~(b 2)2 (41) 

New equations containing derivatives of ui no higher than the second order can now be obtained only after 
differentiating Eq. (41) with respect to p. It turns out that after this differentiation and using (41) the equation 
F = 0 is obtained, containing derivatives of ui no higher than the first order (it will not be given here in view of 
its length). This equation must then be differentiated with respect to p and S. In view of the length of  the 
further calculations, which were carried out on a computer in the REDUCE system, we will only describe the 
results. 

We have (v 2 + 2x2/~)(x~ - 4 )  ~ 0 (otherwise we obtain a contradiction of the condition ~ ~ 0). Then, from 
the equation F -- 0 we find an expression for Ws, after substituting which into the equation 

~(VVs ) / 3P + XS =" 0 (42) 

(43) 

we obtain 

2x3bov 2 + x2 (4x2bo + 6z2a 2 - 3a 3) = 0 

(am XXpp - X 2" b 0 = (XXpap - 2a(a + x 2))) 

Suppose b0 ~ 0. S in~  Eq. (42) holds by virtue of (30), after substituting into it the product Ws, obtained from 
F = 0, we determine v', and after substituting v ~ into (3) we obtain 

(xxpp - x2)(xtpp -3x2) - -  0 

which contradicts the condition b0 ~ 0. 
Suppose now that b0 = 0. From (43) we then obtain x~ - 3x2, = 0, which corresponds to the equation of state 

f, of a polytropic gas with polytropy index y = 2. Then vv s = v2A/A and from the relation O(Ws)fOS - Vss - V2s = 0 
we obtain the equation 

VV ss - ( v  2/A2)(AA"+2(AA'g+VpVs) 2 I (v2 g' +292A2)=O (44) 

differentiation of which with respect top leads to an identity. This implies that the overdetermined system consisting 
of Eqs (3), (30), (32) and (33) is in involution. 

Note that in this case, Eq. (3) and w s = v2A'/A has the integral 

v 2 = (el - 4p  ~ ) A  2 (el = con.st) 
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Hence, for the equation of state of the form x = g(p)A2(S), the system of equations (3), (30), (32), (33) is only 
compatible for equations of state of a polytropic gas with polytropy index T ffi 0 and has a solution with an 
arbitrariness in a single function of a single argument. 

This completes the proof of  the theorem. 
This research was carried out with financial support from the Russian Foundation for Basic Research (93-013- 

17361). 
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